A Class of Extended Fractional Derivative Operators and Associated Generating Relations Involving Hypergeometric Functions

نویسندگان

  • Hari M. Srivastava
  • Rakesh K. Parmar
  • Purnima Chopra
چکیده

Recently, an extended operator of fractional derivative related to a generalized Beta function was used in order to obtain some generating relations involving the extended hypergeometric functions [1]. The main object of this paper is to present a further generalization of the extended fractional derivative operator and apply the generalized extended fractional derivative operator to derive linear and bilinear generating relations for the generalized extended Gauss, Appell and Lauricella hypergeometric functions in one, two and more variables. Some other properties and relationships involving the Mellin transforms and the generalized extended fractional derivative operator are also given. 2010 Mathematics Subject Classification. Primary 26A33, 33C05; Secondary 33C20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results Associated with Fractional Calculus Operators Involving Appell Hypergeometric Function

A class of fractional derivative operators (with the Appell hypergeometric function in the kernel) is used here to define a new subclass of analytic functions and a coefficient bound inequality is established for this class of functions. Also, an inclusion theorem for a class of fractional integral operators involving the Hardy space of analytic functions is proved. The concluding remarks brief...

متن کامل

A Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions

In this paper‎, ‎a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly‎. ‎First‎, ‎the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs)‎. ‎Then‎, ‎the unknown functions are approximated by the hybrid functions‎, ‎including Bernoulli polynomials and Block-pulse functions based o...

متن کامل

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

Distortion and Convolutional Theorems for Operators of Generalized Fractional Calculus Involving Wright Function

Using the Wright’s generalized hypergeometric function, we investigate a class W (q, s;A,B, λ) of analytic functions with negative coefficients. We derive many results for the modified Hadamard product of functions belonging to the class W (q, s;A,B, λ). Moreover, we generalize some of the distortion theorems to the classical fractional integrals and derivatives and the Saigo (hypergeometric) o...

متن کامل

Multidimensional Fractional Calculus Operators Involving the Gauss Hypergeometric Function

This paper deals with some multidimensional integral operators involving the Gauss hypergeometric function in the kernel and generating the multidimensional modified fractional calculus operators introduced in [8]. Some mapping properties, weighted inequalities, a formula of integration by parts and index laws are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Axioms

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012